Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs
نویسندگان
چکیده
Three-dimensional printing/additive manufacturing (3DP/AM) for tissue engineering and regenerative medicine (TE/RM) applications is a multifaceted research area encompassing biology, material science, engineering, and the clinical sciences. Although being quite mature as a research area, only a handful of clinical cases have been reported and even fewer commercial products have made it to the market. The regulatory pathway and costs associated with the introduction of bioresorbable materials for TE/RM have proven difficult to overcome, but greater access to 3DP/AM has spurred interest in the processing and availability of existing and new bioresorbable materials. For this purpose, herein, we introduce a series of medical-grade filaments for fused deposition modelling/fused filament fabrication (FDM/FFF) based on established and Federal Drug Administration (FDA)-approved polymers. Manufacturability, mechanical characterization, and accelerated degradation studies have been conducted to evaluate the suitability of each material for TE/RM applications. The comparative data serves to introduce these materials, as well as a benchmark to evaluate their potential in hard and soft tissue engineering from a physicochemical perspective.
منابع مشابه
Fabrication and optimisation of a fused filament 3D-printed microfluidic platform
A 3D-printed microfluidic device was designed and manufactured using a low cost ($2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to suc...
متن کاملFabrication and optimisation of a fused filament 3D-printed microfluidic platform
A 3D-printed microfluidic device was designed and manufactured using a low cost ($2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to suc...
متن کاملFabrication and optimisation of a fused filament 3D-printed microfluidic platform
A 3D-printed microfluidic device was designed and manufactured using a low cost ($2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to suc...
متن کاملFabrication and optimisation of a fused filament 3D-printed microfluidic platform
A 3D-printed microfluidic device was designed and manufactured using a low cost ($2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to suc...
متن کاملA Microfluidics Based 3d Bioprinter with On-the-fly Multimaterial Switching Capability
This work details the development of a novel 3D (3-dimensional) printing system for use in the fabrication of complex biological tissue constructs. The printing system incorporates a microfluidic print head that uses coaxial flow focusing to generate, crosslink, and dispense a microfiber of sodium alginate, and a 3D positioning system to pattern the dispensed microfiber using fused filament fab...
متن کامل